Source code for src.core.transformer.transformer

import os
import json
import torch
import logging
import pandas as pd

from .dataset import create_dataloader, PreprocessTransformer
from .model import TransformerModel, TransformerTrainer
from plot_utils import plot_embed, plot_history


[docs] class Transformer: """ A class to run Transformer data preprocessing, training and inference :param config_dict: Config Params Dictionary :type config_dict: dict """ def __init__(self, config_dict): self.logger = logging.getLogger(__name__) self.config_dict = config_dict self.val_split = self.config_dict["dataset"]["val_split"] self.test_split = self.config_dict["dataset"]["test_split"] self.batch_size = self.config_dict["dataset"]["batch_size"] self.seed = self.config_dict["dataset"]["seed"]
[docs] def run(self): """ Runs Transformer Training and saves output """ self.transformer_ds = PreprocessTransformer(self.config_dict) tokens = self.transformer_ds.get_data() train_loader, val_loader, self.test_loader = create_dataloader( tokens, self.val_split, self.test_split, self.batch_size, self.seed ) self.model = TransformerModel(self.config_dict) lr = self.config_dict["train"]["lr"] optim = torch.optim.Adam(self.model.parameters(), lr=lr) self.trainer = TransformerTrainer(self.model, optim, self.config_dict) self.history = self.trainer.fit(train_loader, val_loader) self.save_output()
[docs] def run_infer(self): """ Runs inference :return: True and Predicted tokens :rtype: tuple (list, list) """ sents, tokens_pred = self.trainer.predict(self.test_loader) sents = self.transformer_ds.batched_ids2tokens(sents) tokens_pred = tokens_pred.argmax(axis=-1).astype("int") tokens_pred = self.transformer_ds.batched_ids2tokens(tokens_pred) return sents, tokens_pred
[docs] def save_output(self): """ Saves Training and Inference results """ output_folder = self.config_dict["paths"]["output_folder"] self.logger.info(f"Saving Outputs {output_folder}") with open(os.path.join(output_folder, "training_history.json"), "w") as fp: json.dump(self.history, fp) src_embeds = self.model.src_embed_layer.weight.detach().numpy() vocab = list(self.transformer_ds.word2id.keys()) plot_embed(src_embeds, vocab, output_folder, fname="Tokens Embeddings TSNE") plot_history(self.history, output_folder) sents, tokens_pred = self.run_infer() test_df = pd.DataFrame.from_dict({"Sentence": sents, "Prediction": tokens_pred}) test_df.to_csv(os.path.join(output_folder, "Test Predictions.csv"), index=False)