src.core.rnn package#
Submodules#
src.core.rnn.dataset module#
- class src.core.rnn.dataset.RNNDataset(config_dict)[source]#
Bases:
Word2VecDataset
RNN Dataset
- Parameters:
config_dict (dict) – Config Params Dictionary
- get_data()[source]#
Generates tokens and labels from extracted data
- Returns:
Input tokens, Labels
- Return type:
tuple (numpy.ndarray [num_samples, seq_len], numpy.ndarray [num_samples, num_classes])
- src.core.rnn.dataset.create_dataloader(X, y, val_split=0.2, batch_size=32, seed=2024)[source]#
Creates Train, Validation DataLoader
- Parameters:
X (torch.Tensor (num_samples, seq_len)) – Input tokens
y (torch.Tensor (num_samples, num_classes)) – Output Labels
val_split (float, optional) – validation split, defaults to 0.2
batch_size (int, optional) – Batch size, defaults to 32
seed (int, optional) – Seed, defaults to 2024
- Returns:
Train, Val dataloaders
- Return type:
tuple (torch.utils.data.DataLoader, torch.utils.data.DataLoader)
src.core.rnn.model module#
- class src.core.rnn.model.RNNCell(h_dim, inp_x_dim, out_x_dim)[source]#
Bases:
Module
RNN Cell
- Parameters:
h_dim (int) – Hidden state vector dimension
inp_x_dim (int) – Input vector dimension
out_x_dim (int) – Output vector dimension
- forward(ht_1, xt)[source]#
Forward propogation
- Parameters:
ht_1 (torch.Tensor (batch_size, h_dim)) – Hidden state vector
xt (torch.Tensor (batch_size, embed_dim)) – Input vector
- Returns:
New hidden states, output
- Return type:
tuple (torch.Tensor [batch_size, h_dim], torch.Tensor [batch_size, out_dim])
- class src.core.rnn.model.RNNModel(config_dict)[source]#
Bases:
Module
RNN Architecture
- Parameters:
config_dict (dict) – Config Params Dictionary
- forward(X)[source]#
Forward propogation
- Parameters:
X (torch.Tensor (batch_size, seq_len)) – Input tokens
- Returns:
Prediction labels
- Return type:
torch.Tensor (batch_size, num_classes)
Initialized hidden states
- Returns:
List of hidden states
- Return type:
list
- class src.core.rnn.model.RNNTrainer(model, optimizer, config_dict)[source]#
Bases:
Module
RNN Trainer
- Parameters:
model (torch.nn.Module) – RNN model
optimizer (torch.optim) – Optimizer
config_dict (dict) – Config Params Dictionary
- fit(train_loader, val_loader)[source]#
Fits the model on dataset. Runs training and Validation steps for given epochs and saves best model based on the evaluation metric
- Parameters:
train_loader (torch.utils.data.DataLoader) – Train Data loader
val_loader (torch.utils.data.DataLoader) – Validaion Data Loader
- Returns:
Training History
- Return type:
dict
- predict(data_loader)[source]#
Runs inference to predict a translation of soruce sentence
- Parameters:
data_loader (torch.utils.data.DataLoader) – Infer Data loader
- Returns:
Predicted tokens
- Return type:
numpy.ndarray (num_samples, num_classes)
src.core.rnn.rnn module#
- class src.core.rnn.rnn.RNN(config_dict)[source]#
Bases:
object
A class to run RNN data preprocessing, training and inference
- Parameters:
config_dict (dict) – Config Params Dictionary